Zinc oxide/redox mediator composite films-based sensor for electrochemical detection of important biomolecules.

نویسندگان

  • Chun-Fang Tang
  • S Ashok Kumar
  • Shen-Ming Chen
چکیده

Electrochemical oxidation of serotonin (SN) onto zinc oxide (ZnO)-coated glassy carbon electrode (GCE) results in the generation of redox mediators (RMs) that are strongly adsorbed on electrode surface. The electrochemical properties of zinc oxide-electrogenerated redox mediator (ZnO/RM) (inorganic/organic) hybrid film-coated electrode has been studied using cyclic voltammetry (CV). The scanning electron microscope (SEM), atomic force microscope (AFM), and electrochemical techniques proved the immobilization of ZnO/RM core/shell microparticles on the electrode surface. The GCE modified with ZnO/RM hybrid film showed two reversible redox peaks in acidic solution, and the redox peaks were found to be pH dependent with slopes of -62 and -60 mV/pH, which are very close to the Nernst behavior. The GCE/ZnO/RM-modified electrode exhibited excellent electrocatalytic activity toward the oxidations of ascorbic acid (AA), dopamine (DA), and uric acid (UA) in 0.1M phosphate buffer solution (PBS, pH 7.0). Indeed, ZnO/RM-coated GCE separated the anodic oxidation waves of DA, AA, and UA with well-defined peak separations in their mixture solution. Consequently, the GCE/ZnO/RMs were used for simultaneous detection of DA, AA, and UA in their mixture solution. Using CV, calibration curves for DA, AA, and UA were obtained over the range of 6.0 x 10(-6) to 9.6 x 10(-4)M, 1.5 x 10(-5) to 2.4 x 10(-4)M, and 5.0 x 10(-5) to 8 x 10(-4)M with correlation coefficients of 0.992, 0.991, and 0.989, respectively. Moreover, ZnO/RM-modified GCE had good stability and antifouling properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphene Oxide/Polyaniline-Based Multi Nano Sensor for Simultaneous Detection of Carbon Dioxide, Methane, Ethanol and Ammonia Gases

In this study, a multi nanosensor was fabricated for the simultaneous detection of carbon dioxide, methane, ethanol, and ammonia gases, and its electrochemical response to various concentrations of these gases were investigated. In order to fabricate this multi nanosensor, in the first phase, the Graphene-Oxide/Polyaniline (GO/PANI) nanocomposite was synthesized. Chemical ...

متن کامل

An Electrochemical Sensor Based on Nickel Oxides Nanoparticle/ Graphene Composites for Electrochemical Detection of Epinephrine

The combination of graphene and nickel oxide nanoparticles yields nanostructured electrochemical sensor formed a novel kind of structurally uniform and electrocatalytic activity material. In cyclic voltammetry studies, in the presence of epinephrine, nickel oxide / graphene  composite modified electrode shows a significantly higher current response for epinephrine oxidation. Based on differenti...

متن کامل

Highly Sensitive Amperometric Sensor Based on Gold Nanoparticles Polyaniline Electrochemically Reduced Graphene Oxide Nanocomposite for Detection of Nitric Oxide

A sensitive electrochemical sensor was fabricated for selective detection of nitric oxide (NO) based on electrochemically reduced graphene (ErGO)-polyaniline (PANI)-gold nanoparticles (AuNPs) nanocomposite. It was coated on a gold (Au) electrode through stepwise electrodeposition to form AuNPs-PANI-ErGO/Au electrode. The AuNPs-PANI-rGO nanocomposite was characterized by Field Emission Scanning ...

متن کامل

Electrochemical sensing based on redox mediation at carbon nanotubes.

An electrochemical sensing platform was developed based on the integration of redox mediators and carbon nanotubes (CNT) in a polymeric matrix. To demonstrate the concept, a redox mediator Azure dye (AZU) was covalently attached to polysaccharide chains of chitosan (CHIT) and interspersed with CNT to form composite films for the amperometric determination of beta-nicotinamide adenine dinucleoti...

متن کامل

Green material: ecological importance of imperative and sensitive chemi-sensor based on Ag/Ag2O3/ZnO composite nanorods

In this report, we illustrate a simple, easy, and low-temperature growth of Ag/Ag2O3/ZnO composite nanorods with high purity and crystallinity. The composite nanorods were structurally characterized by field emission scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy which confirmed that synthesized product have ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical biochemistry

دوره 380 2  شماره 

صفحات  -

تاریخ انتشار 2008